Extensions 1→N→G→Q→1 with N=C32 and Q=C4xC8

Direct product G=NxQ with N=C32 and Q=C4xC8
dρLabelID
C12xC24288C12xC24288,314

Semidirect products G=N:Q with N=C32 and Q=C4xC8
extensionφ:Q→Aut NdρLabelID
C32:(C4xC8) = C4xF9φ: C4xC8/C4C8 ⊆ Aut C32368C3^2:(C4xC8)288,863
C32:2(C4xC8) = C8xC32:C4φ: C4xC8/C8C4 ⊆ Aut C32484C3^2:2(C4xC8)288,414
C32:3(C4xC8) = C4xC32:2C8φ: C4xC8/C2xC4C4 ⊆ Aut C3296C3^2:3(C4xC8)288,423
C32:4(C4xC8) = Dic3xC3:C8φ: C4xC8/C2xC4C22 ⊆ Aut C3296C3^2:4(C4xC8)288,200
C32:5(C4xC8) = C6.(S3xC8)φ: C4xC8/C2xC4C22 ⊆ Aut C3296C3^2:5(C4xC8)288,201
C32:6(C4xC8) = C12xC3:C8φ: C4xC8/C42C2 ⊆ Aut C3296C3^2:6(C4xC8)288,236
C32:7(C4xC8) = C4xC32:4C8φ: C4xC8/C42C2 ⊆ Aut C32288C3^2:7(C4xC8)288,277
C32:8(C4xC8) = Dic3xC24φ: C4xC8/C2xC8C2 ⊆ Aut C3296C3^2:8(C4xC8)288,247
C32:9(C4xC8) = C8xC3:Dic3φ: C4xC8/C2xC8C2 ⊆ Aut C32288C3^2:9(C4xC8)288,288


׿
x
:
Z
F
o
wr
Q
<